Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhu-Yan Zhang, Shan Gao,* Li-Hua Huo and Jing-Gui Zhao

Labortatory of Functional Materials, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail:
shangao67@yahoo.com

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.050$
$w R$ factor $=0.181$
Data-to-parameter ratio $=13.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1-Carboxymethyl-3-hydroxypyridinium nitrate-3-hydroxypyridinium-1-acetate (1/1)

In the crystal structure of the title $1: 1$ co-crystal, $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{NO}_{3}{ }^{+}$.$\mathrm{NO}_{3}{ }^{-} \cdot \mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{3}$, two cations interact with two zwitterions to form a hydrogen-bonded ring, the nitrate anions being located outside of the ring.

Comment

Zwitterionic pyridinioacetate (Szafran et al., 1998) is a betaine that affords a plethora of metal carboxylate complexes (Cambridge Structural Database, Version 5.25; Allen, 2002). With a hydroxy substituent at the 3-position of the pyridine ring, the resulting compound exists in either a zwitterionic or an uncharged configuration (Zhao et al., 2004). We changed experimental conditions to yield a new compound, (I), whose crystal structure is reported here.

(I)

One of the O atoms of the delocalized carboxyl group $\left(-\mathrm{CO}_{2}{ }^{-}\right)$of the 3-hydroxypyridinium-1-acetate zwitterion is linked to the carboxylic acid group of the adjacent cation through a short hydrogen bond [O4..O7 = $2.482(2) \AA$ A (Fig. 1). This is shorter than that reported in 1-carboxymethyl-3-hydroxypyridinium chloride-3-hydroxypyridinium-1acetate (1/1) [2.519 (2) Aं; Zhao et al., 2004]. The other O atom of the zwitterion forms a hydrogen bond to the 3-hydroxy group of an adjacent cation, giving rise to a cation ring motif with the nitrate anions outside the ring and linked through hydrogen bonds (Fig. 2).

Experimental

An aqueous solution of 3-hydroxypyridine ($9.55 \mathrm{~g}, 0.10 \mathrm{~mol}$) and sodium hydroxide $(4.00 \mathrm{~g}, 0.10 \mathrm{~mol})$ was reacted with an aqueous solution of chloroacetic acid ($14.18 \mathrm{~g}, 0.10 \mathrm{~mol}$) that had been neutralized with sodium hydroxide ($6.00 \mathrm{~g}, 0.15 \mathrm{~mol}$). The pH of the mixture was approximately 9-10. The mixture was refluxed for 5 h and the cooled solution was treated with 0.05 M nitric acid to a pH of $2-3$. The solution was then filtered and colourless crystals of (I) were obtained after several days. Analysis calculated for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{9}$: C 45.54, H 4.09, N 11.38\%; found: C 45.66, H 4.19, N 11.26\%.

Received 16 September 2005 Accepted 26 September 2005 Online 30 September 2005

The title compound, showing the atom-numbering scheme, with displacement ellipsoids drawn at the 50% probability level; the $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bond is shown as a dashed line.

Figure 2

A plot of the layer structure of (I), with hydrogen bonds shown as dashed lines.

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{NO}_{3}{ }^{+} \cdot \mathrm{NO}_{3}{ }^{-} \cdot \mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{3}$
$M_{r}=369.29$
Triclinic, $P \overline{1} \overline{1}$
$a=7.0054(14) \AA$
$b=8.2661(17) \AA$
$c=14.445(3) \AA$
$\alpha=74.50(3)^{\circ}$
$\beta=77.09(3)^{\circ}$
$\gamma=88.37(3)^{\circ}$
$V=785.2(3) \AA^{\circ}$

Data collection

Rigaku R-AXIS RAPID diffractometer

ω scans

Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\text {min }}=0.959, T_{\text {max }}=0.976$ 6964 measured reflections

$Z=2$

$D_{x}=1.562 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5868 reflections
$\theta=3.0-26.4^{\circ}$
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, colourless
$0.39 \times 0.26 \times 0.18 \mathrm{~mm}$

3206 independent reflections 2417 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=26.5^{\circ}$
$h=-8 \rightarrow 8$
$k=-10 \rightarrow 10$
$l=-18 \rightarrow 18$

Refinement

Refinement on F^{2}
$w R\left(F^{2}\right)=0.181$
$S=1.06$
3206 reflections
244 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1204 P)^{2} \\
&+0.0897 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.44 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.48 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

N2-C1	1.336 (3)	O8-C14	1.228 (2)
N2-C5	1.346 (3)	O9-C9	1.340 (3)
N2-C6	1.477 (2)	C1-C2	1.384 (3)
N3-C8	1.335 (2)	C2-C3	1.380 (3)
N3-C12	1.346 (2)	C3-C4	1.377 (3)
N3-C13	1.477 (2)	C4-C5	1.373 (3)
$\mathrm{O} 1-\mathrm{N} 1$	1.218 (3)	C6-C7	1.511 (3)
$\mathrm{O} 2-\mathrm{N} 1$	1.229 (3)	C8-C9	1.390 (3)
$\mathrm{O} 3-\mathrm{N} 1$	1.221 (2)	C9-C10	1.387 (3)
O4-C7	1.293 (3)	C10-C11	1.374 (3)
O5-C7	1.206 (2)	C11-C12	1.370 (3)
O6-C2	1.338 (2)	C13-C14	1.519 (3)
O7-C14	1.266 (2)		
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2$	120.53 (18)	O8-C14-C13	115.92 (16)
N2-C5-C4	119.3 (2)	O9-C9-C10	124.90 (17)
N2-C6-C7	113.26 (16)	O9-C9-C8	116.67 (17)
N3-C8-C9	120.67 (17)	C1-N2-C5	121.77 (17)
N3-C12-C11	119.52 (17)	C1-N2-C6	119.24 (17)
N3-C13-C14	112.42 (14)	C3-C2-C1	118.67 (19)
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{O} 3$	122.9 (2)	C4-C3-C2	119.48 (18)
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{O} 2$	119.0 (2)	C5-N2-C6	118.94 (18)
$\mathrm{O} 3-\mathrm{N} 1-\mathrm{O} 2$	118.2 (2)	C5-C4-C3	120.3 (2)
O4-C7-C6	114.23 (16)	C8-N3-C12	121.56 (15)
O5-C7-O4	126.4 (2)	C8-N3-C13	118.63 (15)
O5-C7-C6	119.37 (18)	C12-N3-C13	119.76 (16)
O6-C2-C3	123.78 (18)	C10-C9-C8	118.43 (18)
O6-C2-C1	117.55 (17)	C11-C10-C9	119.24 (17)
O7-C14-C13	117.32 (15)	C12-C11-C10	120.58 (17)
O8-C14-O7	126.76 (18)		

Table 2
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 15 \cdots \mathrm{O} 7$	0.86 (2)	1.62 (2)	2.482 (2)	178 (3)
O6-H16 . ${ }^{\text {O }} 8^{\text {i }}$	0.85 (2)	1.83 (2)	2.619 (2)	154 (3)
$\mathrm{O} 9-\mathrm{H} 17 \cdots \mathrm{O} 1^{\text {ii }}$	0.85 (3)	1.96 (3)	2.772 (3)	159 (3)
$\mathrm{O} 9-\mathrm{H} 17 \cdots \mathrm{O} 2^{\text {ii }}$	0.85 (3)	2.44 (2)	3.155 (3)	142 (3)

Symmetry codes: (i) $-x+1,-y+2,-z+1$; (ii) $x+1, y-1, z$.

The acid and hydroxy H atoms were located and refined isotropically, with the $\mathrm{O}-\mathrm{H}$ distance restrained to 0.85 (1) \AA. All other H atoms were placed in calculated positions, with aromatic $\mathrm{C}-\mathrm{H}=$ $0.93 \AA$ and aliphatic $\mathrm{C}-\mathrm{H}=0.97 \AA$, and were included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

organic papers

The authors thank the National Natural Science Foundation of China (No. 20101003), the Scientific Fund of Remarkable Teachers of Heilongjiang Province (No. 1054 G036), and Heilongjiang University for supporting this study.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Szafran, M., Dega-Szafran, Z., Katrusiak, A., Buczak, G., Glowiak, T., Sitkowski, J. \& Stef, L. (1998). J. Org. Chem. 63, 2898-2908.
Zhao, H., Huo, L.-H., Gao, S., Zhang, Z.-Y., Zhao, J.-G. \& Ng, S. W. (2004). Acta Cryst. E60, o1501-1503.

